0007名無しさん@ピンキー (ワッチョイ fec0-xVEZ)
2025/08/23(土) 13:54:14.74ID:5lw7ZcNF0baseはチューニングされていない、与えられた文書の続きを垂れ流すモデルやで
instructはchatGPTのように対話して質問に答えるようチューニングされたAIやで
⚫︎LLMを動かすにはGPUを使う方法とCPUを使う方法があるで
GPUを使う場合は比較的速く動くけど、VRAM容量の大きなグラボが必要になるで
CPUを使う場合はグラボが不要でメインメモリのRAMを増やすだけで大きなモデルが動かせるというメリットがあるけど、動作速度はGPUよりは落ちるで
⚫︎LLMモデルには量子化されてないsafetensorsファイルと、8bitや4bitなどに量子化されて容量が小さくなったものがあるで
量子化モデルにはGGUFやGPTQなどの種類があるで
基本的にはCPU (llama.cpp)で動かす場合はGGUF、GPUで動かす場合はGPTQを選べばええで
量子化は4bitまでならほとんど精度が落ちないのでよくわからない場合はIQ4_XSやQ4_k_mなどにしとけばええで
⚫︎LLMモデルは既存のbaseモデルを元に自分で学習(ファインチューニング)させることもできるで
画像AIのようにLoRAファイルとして学習結果を保存したりLoRAを読み込むこともできるで
●モデルのサイズ(パラメータ数)は◯B (B=billion=10億)という単位で表記されるで
例えば7Bのモデルを読み込むなら量子化しない場合は約14GB、8ビット量子化の場合は7GB、4ビット量子化の場合は3.5GBのメモリまたはVRAMが必要になるで
基本的にはBが大きいほど性能が高いで