◆葉鍵アカデミー 第十講 ◆
■ このスレッドは過去ログ倉庫に格納されています
_ _
〃┏━━ 、 ___________________________
| ノノソハ))) /「葉鍵的」に学問についてマターリ語り合うスレッド第九講だよっ。
(\リリ ´ー`)リ < とっても答えにくい質問はうぐぅだけど、どんどん質問してほしいな。
(ニE(#⊃o⊂#) \学則は>3-あたりを参照してね。
/__∞_|  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
(_f_)_f_)
前スレ
◆葉鍵アカデミー 第九講 ◆
ttp://pie.bbspink.com/leaf/kako/1130/11306/1130674219.html
493 名無しさんだよもん [sage] Date:2005/03/23(水) 13:17:50 ID:Z/K1Y87Q0 Be:
振り子の周期はθが充分小さいとき√(g/l)になりますが
小さくないときはどうなりますか。
どこの本を見ても「θが充分小さいとき」の場合しか書いてありません。
494 名無しさんだよもん [sage] Date:2005/03/23(水) 20:54:46 ID:B74c5wRQ0 Be:
らぐらんじゅほうていしき解きなさいよ 495 名無しさんだよもん [sage] Date:2005/03/23(水) 21:14:53 ID:sfESn7Uv0 Be:
/◎)))
/ / :
/ / :
/ / : こんばんは、悪の電気部部長です。
/ / :, たとえばヒモで吊った振り子でθがすごく大きい(極端に180°とか)とすると
/ / :, 錘が目一杯振れたあと、ヒモが撓んで円周上以外を通って落ちてくるかもしれません。
'ヽ/ヽ / / :, 棒で吊った振り子ならいちばんてっぺんで止まっちゃうかもしれません。
'´ ' `ヽ/ / :, 初速を与えすぎると一方向に回転し続けてしまうかも。
.i ノノノ))〉 / :, これって振り子って呼んでいいんでしょうか・・・?
.ノjリ(l゚ ヮ゚ノ! / :, ということで、色々な条件を考慮しなきゃいけないので√(g/l)のような単純な式にはなりません。
| {(lつ¶__/ ヽヽ / ̄ ̄ ̄ ヽ
Lく/_lj/. | ヽ ニ三 | ┃┃ |
_ ∪|___| ヽ ____ノ
[____]
/^ヽ、 /^)
, -‐-V-‐ 、
/ /´ ヽヽ、
| (ノ/リノ)リ))))
/ ノF! ┃ ┃ |i|
(从iヘ、''' ヮ''ノゞ ヨタ話は置いておいて、sinθ≒θの近似による誤差が無視できないとどうなるかは
⊂}l^:|.ロ{つ http://www12.plala.or.jp/ksp/mathInPhys/elliptical/
く_/_|_j_ゝ このサイトの解説がわかりやすいんじゃないかなと思います。
(__八__) 496 名無しさんだよもん [sage] Date:2005/03/23(水) 21:37:00 ID:Z/K1Y87Q0 Be:
>>495
めちゃめちゃありがとうございます。周期Tはよくわかりました。
ついでに、sinθ≒θの近似をするとθ=C1×sin{√(g/l)t}+C2×cos{√(g/l)t}となりますが
もし近似をしなかったらtの関数としてのθの具体形はどうなりますか。
>>494
EL方程式はニュートン方程式と同値でθ''=(負定数)×sinθしか出てきません。
問題はそこから先です。
497 月島瑠璃子 w/h EvanescentWave [sage] Date:2005/03/23(水) 22:07:01 ID:tswOSa850 Be:
! 从ノリ)〉 < dθ^2/dt^2=-(g/l)sinθをlaplace変換で
ノli(! ゚ ‐゚ノ < 解こうとしたら挫折したよ・・・右辺が-(g/l)θなら一発なのに。
498 名無しさんだよもん [sage] Date:2005/03/24(木) 20:38:54 ID:AxJgrijD0 Be:
/^ヽ、 /^)
, -‐-V-‐ 、
/ /´ ヽヽ、
| (ノ/リノ)リ))))
/ ノF! ┃ ┃ |i|
(从iヘ、''' ヮ''ノゞ うーん、ルンゲ・クッタ法でちまちま求めることしか出来ませんでした・・・
⊂}l^:|.ロ{つ 私以外の優秀な誰かに微分方程式を解いてもらってくださいっ
く_/_|_j_ゝ
(__八__) ここでことみちゃん登場
499 名無しさんだよもん [sage] Date:2005/03/26(土) 04:02:06 ID:/pa+L4Pz0 Be:
>>495
ことみ「振り子といえば往復運動を指すのが普通だけど、回転などの一般の周期運動をする力学装置を、広い意味で振り子ということがあるの」
>>497
ことみ「ラプラス変換が使えるのは、定係数の線形微分方程式だけなの」
>>496
ことみ「というわけで、考えてみたの。楕円関数が現れて、とってもとっても面白いの。ちょっと難しいけど、我慢して聞いてほしいの」
ことみ「結論から言うと、単振り子の運動方程式
(d^2/dt^2) θ = -(g/l) sinθ
の厳密解 θ(t) は、次のように場合分けされるの:
・振動(v < 2 sqrt(gl))の場合:
θ(t) = 2 arcsin( v/(2 sqrt(gl)) sn( sqrt(g/l)t, v/(2 sqrt(gl)) ) )
・回転(v > 2 sqrt(gl))の場合:
θ(t) = 2 arcsin( sn( (v/(2l))t, (2 sqrt(gl))/v ) )
ここで、snはヤコビの楕円関数なの。vは積分定数で、初速を表すの」
ことみ「…なんだか物凄い形だけど、気合を入れて2階微分すればどちらも与方程式を満たすことがわかるの」
ことみ「2階微分方程式の解には本来2つの積分定数が必要で、初速のほかには初期位置が必要だけど、ここでは θ(0)=0 と仮定しているの。初期位置を考慮に入れるには適当な初期位相δをtに足せばいいから、トリビアルなの」
ことみ「導出いってみるの。まず振り子を用意するの」
ことみ「一様な重力加速度gのもとで、一端が固定された軽い剛体棒(長さl)を振り子の腕として、他端に質量mの小球をつけて運動させるの。小球の位置は角度θで表して、鉛直下方をθ=0°、鉛直上方をθ=180°とするの」
ことみ「定性的には>>495で渚ちゃんが言ったとおり、この振り子は小球に与える初速vが低ければ振動し、高ければ回転するの(ちょうどその隙間で、てっぺんで止まるの)」
ことみ「この境界になるのが、v = 2 sqrt(gl) という値なの。この速度は高校物理の範囲で求められるの」 500 名無しさんだよもん [sage] Date:2005/03/26(土) 04:03:30 ID:/pa+L4Pz0 Be:
ことみ「さて、問題の2階微分方程式を解くには、原理的には積分を2回行えばいいの」
ことみ「1回目の積分に当たるのが力学的エネルギー保存則を使うことなの。エネルギーとはそもそも、力を位置で積分したものだからなの(これは適当な変数変換で時間積分に同一視できるの)」
ことみ「>>495で渚ちゃんの挙げてくれた参考サイトの式をちょっと借用すると、運動エネルギーと位置エネルギーの和は
(1/2)(ml^2)(dθ/dt)^2 + mgl (1 - cosθ)
と書かれるの。初期位置 θ=0 で初速 v を与えたとすると全エネルギーは明らかに (1/2)mv^2 だから、エネルギー保存則は
(1/2)(ml^2)(dθ/dt)^2 + mgl (1 - cosθ) = (1/2)mv^2
で表されるの。上を (dθ/dt) について解いて整理すると、与方程式は結局
dθ/dt = sqrt(2g/l) sqrt(cosθ + C)
という1階微分方程式に帰着するの
ことみ「計算の都合上、定数vを C = (v^2)/(2gl) - 1 と書き換えているの。先に述べた v = 2 sqrt(gl) は、C = 1 に対応するの。初速を与えない v = 0 は、C = -1 なの」
ことみ「1回目の積分が終わったので、次は2回目の積分なの。上式は微分方程式のパターンとしては簡単な
dt = sqrt(l/2g) (1/sqrt(cosθ + C)) dθ
という変数分離形なの」
ことみ「上をこのまま積分しても θ(t) は陽には出てこないけど、t =(θの関数)として陰的にθ(t) が出てくるの。そうして得られた t =(θの関数)の逆関数をとれば、欲しいθ(t) になるの」
ことみ「t=0, θ=0から運動が開始されるという物理的状況を考えて、左辺については区間 [0, t] で、右辺は区間 [0, θ(t)] で定積分をとるの。すると、
t = sqrt(l/2g) ∫[0, θ(t)] (1/sqrt(cosθ + C)) dθ
となるの」 501 名無しさんだよもん [sage] Date:2005/03/26(土) 04:04:36 ID:/pa+L4Pz0 Be:
ことみ「ここで、楕円関数論では昔から知られた変数変換
u = sin(θ/2) (つまりθ = 2 arcsin(u) )
を行うと、ちょっとした計算の後
t = sqrt(l/g) ∫[0, u] ( 1/sqrt( (1 - u^2) ((1+C)/2 - u^2) ) ) du
という形が得られるの」
ことみ「被積分関数の分母が『ルートにくくられたuの4次式』になっているの。これは一般に初等関数で書けないことが知られていて、楕円積分という特殊関数で書かれるの」
ことみ「ここから先は、 (1+C)/2 が1より大きいか小さいかで場合分けが必要なの」
(i) (1+C)/2 < 1 のとき(C < 1、つまり v < 2 sqrt(gl))
ことみ「上式は母数 k = sqrt((1+C)/2) とすれば、第1種楕円積分 F(u, k) のルジャンドル‐ヤコビの標準形に帰着するの。すなわち、
t = sqrt(l/g) F( arcsin(sqrt(2/(1+C)) u), k ) = sqrt(l/g) sn^-1(sqrt(2/(1+C)) u, k)
なの。」
ことみ「上式は母数 k = sqrt((1+C)/2) とすれば、第1種楕円積分 F(u, k) のルジャンドル‐ヤコビの標準形に帰着するの。すなわち、
t = sqrt(l/g) F( arcsin(sqrt(2/(1+C)) u), k )
なの。F(arcsin(x), k) は数学上の約束で sn^-1(x, k) とも書くので、vを復活させて
sqrt(g/l) t = sn^-1( ((2 sqrt(gl))/v) u, v/(2 sqrt(gl)) )
を得るの」
ことみ「sn^-1(x, k) = z の逆関数がヤコビの楕円関数 sn(z, k) = x になることを利用して、u をあらわに書くと
((2 sqrt(gl))/v) u = sn( sqrt(g/l) t, v/(2 sqrt(gl)) )
となるの。最後に、uの定義が θ = 2 arcsin(u) であったことを思い出すと
θ = 2 arcsin( v/(2 sqrt(gl)) sn( sqrt(g/l) t, v/(2 sqrt(gl)) ) )
がようやく出てきて、やっと最初の式が導かれるの」
(ii) (1+C)/2 > 1 のとき(C > 1、つまり v > 2 sqrt(gl))
ことみ「母数 k をさっきの逆数 k = sqrt(2/(1+C)) とすれば、同じような手続きで
θ(t) = 2 arcsin( sn( (v/(2l))t, (2 sqrt(gl))/v ) )
が導かれるの」 502 名無しさんだよもん [sage] Date:2005/03/26(土) 04:05:28 ID:/pa+L4Pz0 Be:
ことみ「苦労したけれど、この結果はとってもとっても面白いの」
ことみ「楕円関数 sn(z, k) は、k=0のとき sn(z, 0) = sin z、k=1のとき sn(z, 1) = tanh z になるという性質があるの」
ことみ「初速がちょうど v = 2 sqrt(gl) のときは、振動解も回転解も 2 arcsin(tanh (v/(2l))t) の形になるの。これはt→∞でθ→πに漸近、つまり充分時間後にはてっぺんで止まることを意味するの」
ことみ「また、初速が非常に速いとき(v→∞)は、回転解は θ 〜 arcsin(sin (v/(2l))t)、つまり θ 〜 (v/(2l))t という等速円運動になるの。これは、速度が充分速ければ重力の効果は相対的に小さくなるだろうという直観に合うの」
ことみ「さらに、(あまりエレガントじゃないけれど)振動解をvについてベキ級数展開すれば、v〜0 で θ 〜 v/(sqrt(gl)) sin(sqrt(g/l)t) という単振動に一致することもわかるの」
ことみ「棒じゃなくて紐の場合は、腕からの抗力がθ=90°で不連続的に働かなくなることと、腕の長さが可変になってここ曲がる〜から、問題がずっと難しくなるの」 ■ このスレッドは過去ログ倉庫に格納されています