等身大ぬいぐるみ ラブドール 6
レス数が950を超えています。1000を超えると書き込みができなくなります。
0001名無しさん@ピンキー2024/09/21(土) 23:50:06.39ID:???
ぬい系ラブドールの総合スレッドです

前スレ
等身大ぬいぐるみ ラブドール
https://mercury.bbspink.com/test/read.cgi/lovedoll/1560683103/
等身大ぬいぐるみ ラブドール2
https://mercury.bbspink.com/test/read.cgi/lovedoll/1615779834/
等身大ぬいぐるみ ラブドール 3
https://mercury.bbspink.com/test/read.cgi/lovedoll/1638664870/
等身大ぬいぐるみ ラブドール 4
https://mercury.bbspink.com/test/read.cgi/lovedoll/1659966720/
等身大ぬいぐるみ ラブドール 5
https://mercury.bbspink.com/test/read.cgi/lovedoll/1707980838/
0889名無しさん@ピンキー2024/09/28(土) 23:51:49.42ID:???
変分量子アルゴリズム
32
RZ (2γ21) RZ (2γ22) RZ (2γ23) RZ (2γ24)
0 1 2 3
0 1 2 3
RX (2γ1) RX (2γ2) RX (2γ3) RX (2γ4)
RZ (2γ5) RZ (2γ6) RZ (2γ7) RZ (2γ8)



RX (2γ9) RX (2γ10) RX (2γ11) RX (2γ12)
RZ (2γ13) • RZ (2γ14) • RZ (2γ15) • RZ (2γ16)
RX (2γ17) RX (2γ18) RX (2γ19) RX (2γ20)
(a)
(b)69
0890名無しさん@ピンキー2024/09/28(土) 23:52:08.72ID:???
Np 個のパラメータを持つ量子ゲート URPQC : [0, 2π)Np → U (2n) を
URPQC (γ) =
Uj (γj)Wj = UNp
(4.2)
Np
γNp WNp ...U2 (γ2)W2U1 (γ1)W1
j=19
0891名無しさん@ピンキー2024/09/28(土) 23:52:24.86ID:???
URPQC(γ) はアンザッツである. URPQC(γ) を
Random Parametrized Quantum Cir-
cuit (RPQC)
Wj はパラメータを持たない量子ゲートとし, Uj (γj ) は
Vj2 = I を満たすエル ミート Vj を用いて, Uj (γj ) := exp [−iγj Vj ]78
0892名無しさん@ピンキー2024/09/28(土) 23:52:51.71ID:???
orblem-agnositc アンザッツとは,
解きたい問題に関する前提知識を用いずに
設計された汎用的 なアンザッツのことをいう
一方で, problem-inspired アンザッツとは,
解きたい問題に関する前提知識を
組 み込んで設計されたアンザッツ87
0893名無しさん@ピンキー2024/09/28(土) 23:53:12.90ID:???
量子ビットトポロジーを持つ量子コンピュータ上の
Hardware Efficient アンザッツ の例として,
隣接している量子ビット間でのみ
2 量子ビットゲートが作用している
アンザッ ツが挙げられる一般的に
定義したアンザッツ URPQC (γ) 987
0894名無しさん@ピンキー2024/09/28(土) 23:53:32.40ID:???
変分量子アルゴリズム
• RZ(−φ) RY (−θ)
(a) A ゲート A (θ, φ) の RY ゲート, RZ ゲート, CNOT ゲートによる分解.
(b) 粒子数保存アンザッツ. A ゲートを繰り返し用いる
A ゲートと粒子数保存アンザッツの構造.
RY (θ) RZ(φ) •
A (θ0,0, φ0,0)
A (θ1,0, φ1,0)
A (θ2,0, φ2,0)
A (θ0,2, φ0,2)
A (θ1,2, φ1,2)
A (θ2,2, φ2,2)
A (θ0,1, φ0,1)
A (θ1,1, φ1,1)
A (θ2,1, φ2,1)6
0895名無しさん@ピンキー2024/09/28(土) 23:53:47.54ID:???
粒子数とは, 量子状態の計算基底による表示において,
1 が立っている量子ビッ トの個数のことで,
古典コンピュータでいう popcount に対応する量
|0111⟩ の粒子数は 336
0896名無しさん@ピンキー2024/09/28(土) 23:54:07.27ID:???
前提知識によってアンザッツで表現すべき量子状態の粒子数が
既にわかっている場合には, 粒子数保存アンザッツは有用
粒子数保存アンザッツを用いた
変分量子アルゴリズムのアンザッツ665
0897名無しさん@ピンキー2024/09/28(土) 23:54:25.29ID:???
アンザッツの性質の指標として, エンタングルメント容量表現力表現度という
量が提案されている n 量子ビット系 H に作用するアンザッツ U : Γ → U (2n)87
0898名無しさん@ピンキー2024/09/28(土) 23:54:50.48ID:???
アンザッツ U (γ) を量子状態 ρ ∈ S (H) に作用させることで,
量子状態 U (γ) ρU (γ)† を得ることができる. γ を
様々な値に変化させることで, U (γ) は
様々なユニタリ演算子となりうるので, U (γ) ρU (γ)† は
また様々 な量子状態874
0899名無しさん@ピンキー2024/09/28(土) 23:55:04.30ID:???
γ が Γ の中の様々な値をとりうるという意味で分布 ν*2を持つ
Γ-値確率変 数と見なすことにすると, U (γ) もまた確率変数と
見なすことができる 一方で, U (2n) 上の “一様分布”7841
0900名無しさん@ピンキー2024/09/28(土) 23:55:24.43ID:???
アンザッツ U : Γ → U (2n) は連続であると仮定する.
この仮定は合理的である. というのも, 変分量子アルゴリ
ズムに用いられる多くのアンザッツは, 回転ゲートと
パラメータを持たないゲートから成るので,
U (γ) の行列表示の各成分は, γ1, γ2, . . . , γNp に依存する
三角関数たちの線型和, つまり連続関数5
0901名無しさん@ピンキー2024/09/28(土) 23:55:44.38ID:???
U (γ) の各成分が連続なので, ボレル可測,
つまり確率変数であるさらに, U (γ) の各成分が
確率変数ならば, U (γ) も確率変数987
0902名無しさん@ピンキー2024/09/28(土) 23:56:02.13ID:???
変分量子アルゴリズム 34
ハール分布に従う確率変数 V を考えてみると,
V ρV † はユニタリ時間発展によって作り出せる
全ての量 子状態9854
0903名無しさん@ピンキー2024/09/28(土) 23:56:23.68ID:???
確率変数 U (γ) と確率変数 V の差に対応する量として,
線型写像 A(t) : L (H⊗t) → L (H⊗t) を U(γ),ν
A(t) (·):= U(γ),ν
リ t - デザインであるという*5. そして, A(t) U(γ),ν
を用いて, 入力 X ∈ L (H) に対して, アンザッツ U (γ) の表
現力 ε(t) U(γ),ν
(X) を
⊗t μH(dV)V⊗t(·) V† −
⊗t ν(dγ)U(γ)⊗t(·) U(γ)† (4.3)
U(2n)98
0904名無しさん@ピンキー2024/09/28(土) 23:56:40.31ID:???
t は自然数,
ν はアンザッツのパラメータ γ の分布,
μH はユニタリ群 U (2n) 上のハール
測度とした. 任意の X ∈ L (H⊗t) に対して
A(t) (X) = 0 であるとき, U (2n)-値確率変数 U (γ) はユニタ U(γ),ν
( t )98
0905名無しさん@ピンキー2024/09/28(土) 23:56:54.72ID:???
シャッテン p - ノルムとした*6.
⊗ t X
( t )
εU(γ),ν (X) := AU(γ),ν
(4.4)54
0906名無しさん@ピンキー2024/09/28(土) 23:57:13.57ID:???
アンザッツの表現力 ε(t) (X) は,
一般化フレームポテンシャルという量と
関係づけられる [39]. アンザッ U(γ),ν
ツ U (γ) とそのパラメータ γ の分布 ν,
X ∈ L (H) に対して, 一般化フレームポテンシャルを,t
F(t) (X) := ν (dγ) ν (dγ′) Tr XU (γ′)† U (γ) X†U (γ)† U (γ′)
(4.5)
(4.6)
(4.7)
(4.8)
U(γ),ν98
0907名無しさん@ピンキー2024/09/28(土) 23:57:26.22ID:???
U (2n)-値確率変数 U (γ) が,
ハール分布 μH に従うとき,
U(2n) とする. すると, X ∈ L (H) に対して,
が成り立ち, アンザッツの表現力 ε(t) U(γ),ν
F(t) U(γ),ν
U(2n)
(X) − F(t) (X) ≥ 0 H
F(t) (X) := H
t μH (dV ) μH (dW)Tr XW†V X†V †W
ΓΓ
Γ
(X) と一般化フレームポテンシャルとの関係は,
2
0908名無しさん@ピンキー2024/09/28(土) 23:58:01.41ID:???
アンザッツの表現力は, A(t)
U(γ),ν
ε(t) U(γ),ν
(X) =
F(t) (X) − F(t) (X) U(γ),ν H
への入力 X に依存する量だった. そこで, 入力に依らない
アンザッツの表現力を定義874
0909名無しさん@ピンキー2024/09/28(土) 23:58:22.25ID:???
2 つの線型写像 L (H⊗t) → L (H⊗t), μ (dV ) V ⊗t (·) V †⊗t
U(2n) H
と ν(dγ)U(γ)⊗t(·)U(γ)†⊗t の差を,
アンザッツの表現力として採用する.
一般に, 2つの線型写像3265
0910名無しさん@ピンキー2024/09/28(土) 23:58:38.30ID:???
変分量子アルゴリズム
オプティマイザーがパラメータを更新していく様子.
パラメータ更新を繰り返すことで, コスト関数 C (γ) の最小 点を求める.
L (H1) → L (H2) 同士の差を定量化するノルムとして,
ダイアモンモンドノルム ‖·‖⋄ という量が知られ
アンザッツ U (γ) の表現力 ⋄ε(t) 98
0911名無しさん@ピンキー2024/09/28(土) 23:58:59.94ID:???
アンザッツ U (γ) の表現力 ε(t)
U(γ),ν
εU(γ),ν := AU(γ),ν⋄ (4.9) (X), ⋄ε(t) は,
最も表現能力のあるユニタリ V との差として定義した
U(γ),ν⋄(t) (t)
U(γ),ν621
0912名無しさん@ピンキー2024/09/28(土) 23:59:15.93ID:???
表現力の値が小さいほど, アンザッツがより豊かな
表現能力を持つという点に注意しなければならない.
以後, 本論文では表現力と表現能力を厳密に使い分ける.
4.1.3 オプティマイザーとは, 関数の最小点を求める
アルゴリズムのことをいう. 多くのオプティマイザーは,
関数のパラメータの更新を繰り返すことで関数の最小点0.021
0913名無しさん@ピンキー2024/09/28(土) 23:59:31.81ID:???
第 t 回目のパラメータ更新を 第 t イテレーションと呼び,
第 t イテレーションにおけるパラメータの値を γ(t) と書く.
変分量子アルゴリズ ムでは, 量子コンピュータ上で
計算したコスト関数の値やその勾配の値をもとに,
古典コンピュータ上でパラ メータの更新69
0914名無しさん@ピンキー2024/09/28(土) 23:59:45.85ID:???
オプティマイザーは, コスト関数の 1 階微分や 2 階微分の情報,
つまり勾配の情報を用いるオプティマイ ザーとコスト関数の
勾配の情報を用いないオプティマイザー84
0915名無しさん@ピンキー2024/09/29(日) 00:00:11.50ID:???
確率的勾配降下法が挙げられる. 一方, コスト関数の勾配の
情報を用いないオプティマイザーとして, Nelder-Mead
COBYLA (Constrained Optimization By Linear Approximation optimizer)
SPSA (Simultaneous Perturbation Stochastic Approximation)
ベイズ最適化 逐次最小化アルゴリズム954
0916名無しさん@ピンキー2024/09/29(日) 00:00:26.83ID:???
逐次最小化アルゴリズムと Rotoselect は,
変分量子アルゴリズムのコスト関数に特化した
オプティマイ ザーである.
ダイアモンドノルム変分量子アルゴリズム
変分量子アルゴリズムにおける確率的勾配降下法と
逐次最小化アルゴリズム41
0917名無しさん@ピンキー2024/09/29(日) 00:00:39.56ID:???
確率的勾配降下法変分量子アルゴリズムのコスト関数の勾配を
いかにして計算するかを述べる. パラメータ γ の第 j 成 分 γj に
関するコスト関数 (4.1) の勾配は,
∂C(γ) 􏰡∂⟨Oi⟩γ ∂fi(x)􏰈􏰈􏰈 ∂γ = ∂γ ∂x 􏰈
(4.10)
j i j
x=⟨Oi⟩γ54
0918名無しさん@ピンキー2024/09/29(日) 00:01:01.34ID:???
Oi⟩γ := Tr OiU (γ) ρiU (γ)† この勾配を計算するには,
各 i に対して, ⟨Oi⟩γ と ∂γj ⟨Oi⟩γ を計算すれば良い.
⟨Oi⟩γ は, 量子状態 ρi にアンザッツ U (γ) を作用させて,
物理量 Oi を測定654
0919名無しさん@ピンキー2024/09/29(日) 00:01:17.51ID:???
∂γj ⟨Oi⟩γ は, 例えば差分法を用いることで
近似的に求めることができる.
ア ンザッツの構造によっては, パラメータシフトルール と呼ばれる方法で
∂γj ⟨Oi⟩γ を正確369
0920名無しさん@ピンキー2024/09/29(日) 00:01:32.59ID:???
URPQC (γ) をとり,
いかにして ∂γj ⟨Oi⟩γ をパラメータシフ
トルールによって求めるかを述べる.
このとき, ⟨Oi ⟩γ = Tr Oi URPQC (γ ) ρi URPQC (γ )†
実数 a1, a2 a3 を用いて,
⟨Oi⟩γ = a1 sin2γj + a2 cos2γj + a3
0921名無しさん@ピンキー2024/09/29(日) 00:02:00.42ID:???
γ の第 j 成分 γj をそれぞれ γj ± π/4 に置き換えたものを γ±
∂ ⟨Oi⟩γ = ⟨Oi⟩γ+ − ⟨Oi⟩γ− (4.12) ∂γj
を得る. つまり, 量子状態 ρi に
アンザッツ U (γ±) を作用させて,
物理量 Oi を測定して得られた結果 ⟨Oi⟩γ± から ∂γj ⟨Oi ⟩γ を
正確に計算654
0922名無しさん@ピンキー2024/09/29(日) 00:02:15.50ID:???
⟨Oi ⟩γ± を有限回の物理量の測定によって推 定するので,
その真の値を得ることはできず, 統計誤差が生じることに注意しておく.
このように ∂γj ⟨Oi⟩γ を 計算する方法をパラメータシフトルール25
0923名無しさん@ピンキー2024/09/29(日) 00:02:34.04ID:???
URPQC (γ) のような構造を持つアンザッツの構造 に関する
パラメータシフトルールを考えたが, より一般的なアンザッツの構造に対する
パラメータシフトルー ル26
0924名無しさん@ピンキー2024/09/29(日) 00:02:49.45ID:???
勾配の情報を用いる代表的なオプティマイザーの 1 つとして,
勾配降下法が挙げられる. 勾配降下法とは, コ スト関数のパラメータを
γ(0) に適当に初期化した後
γ(t+1) ← γ(t) − α∇C(γ(t)) (4.13)
のように, 勾配方向にパラメータの更新を行うことを
何度も繰り返すことで, コスト関数の最小点を求める
ア ルゴリズムである
α ∈ R を学習率という. 上述したように,
変分量子アルゴリズムにおけるコスト関
は, γj に依らない (4.11)5241
0925名無しさん@ピンキー2024/09/29(日) 00:03:15.30ID:???
変分量子アルゴリズム 37
数の勾配の評価では, 有限回の物理量の測定によって
∇C γ(t) を推定していることに注意しなければならな い.
このように, コスト関数の勾配の値を推定する勾配降下法を
一般に確率的勾配降下法54
0926名無しさん@ピンキー2024/09/29(日) 00:03:42.58ID:???
学習率 α はイテレーション t に依らない定数としていたが,
Adam オプティマイザー のように, 学習率 α を
イテレーション t ごとに更新させることで,
オプティマイザーの収束性を向上54
0927名無しさん@ピンキー2024/09/29(日) 00:04:03.21ID:???
コスト関数が, 4.2 で述べる変分量子固
有値ソルバーや Fixed input state compiling と
呼ばれる変分量子アルゴリズムのように,
CRPQC (γ) = Tr OURPQC (γ) ρURPQC (γ)† (4.14)
0928名無しさん@ピンキー2024/09/29(日) 00:04:26.46ID:???
URPQC (γ)
この設定の下, パラメータ γj に
注目してコスト関数の解析的な性質
第 t イテレーションにおけるコスト関数の値 C おいて
, γj 以外のパラメータを固定した関数
RPQC
γ(t)に (4.15)
は, γ
C(t) (γj ) := CRPQC (γ)| (t) j γj′=γj′
に依らない実数 a(t), a(t), a(t) を用いて, j 123

C(t) (γ ) = a(t) sin2γ + a(t) cos2γ + a(t) jj1j2j3
(4.16)
0929名無しさん@ピンキー2024/09/29(日) 00:04:51.40ID:???
実数 a(t), a(t), a(t) は, C(t) (γ ) の独立な
3 点の値から計算できる. 例えば, 独立な
123 jj3点として,γ(t),γ(t)+π,γ(t)−π を選べばよい.
すると,C(t)(γ )=a(t)sin2γ +a(t)cos2γ +a(t) は簡単
jj4j4 jj1j2j3 98
0930名無しさん@ピンキー2024/09/29(日) 00:05:11.10ID:???
コスト関数のあるパラメータ γj について注目してみれば,
C(t) (γj) の最小点を求めることができる.
この最小点を求めるステップを, 注目する j
パラメータ γj の添字 j を変化させて何度も繰り返すことで,
コスト関数の最小点を探索するアルゴリズムを
逐次最小化アルゴリズム54
0931名無しさん@ピンキー2024/09/29(日) 00:05:26.39ID:???
変分量子アルゴリズ ムのコスト関数を, より一般に
C (γ) = Tr OU (γ) ρU (γ)† (4.17) とし,
第 t イテレーションにおけるコスト関数の値 C γ(tにおいて,
γj 以外のパラメータを固定した関数を
C(t) (γj) とする. 逐次最小化アルゴリズムでは,
パラメータの添字 j を変化させて C(t) (γj) の最小点を求め jj
(j ̸=j)32
0932名無しさん@ピンキー2024/09/29(日) 00:05:51.03ID:???
|ψ (γ)⟩ = U (γ) |ψ0⟩ は, 初期状態 |ψ0⟩ に
アンザッツ U (γ) を作用させて得られる量 子状態で, 試行状態という.
試行状態は n スピン系の量子状態であるから, 2n 次元の複素内積空間の
単位ベク トルで表現される. 試行状態を愚直に古典コンピュータ上で
表現するには O(2n) ビットが必要であるが, 量子 コンピュータ上であれば
n 量子ビット65
0933名無しさん@ピンキー2024/09/29(日) 00:06:05.17ID:???
変分量子固有値ソルバーでは, 古典コンピュータ上で は表現しきれない程に
次元の大きい複素内積空間の試行状態から基底状態を探索することができよう.
4.2.2 Fixed input state compiling
Fixed input state compiling (FISC) とは,
n 量子ビットの状態 |ψ0⟩ に作用する V と同等の計算を行う量 子ゲートを求める
変分量子アルゴリズムである [22]. すると, U (γ) をアンザッツすれば, FISC の目的は
コスト関数 Cglobal (γ) = −F 理量
V |ψ0⟩ , U (γ) |0⟩
を最小化65
0934名無しさん@ピンキー2024/09/29(日) 00:06:30.10ID:???
関数は, 物V |ψ0⟩ = U (γ) |0⟩⊗n (4.21)
を満たす γ を求めることにある.
2 つの量子状態 V |ψ0⟩, U (γ) |0⟩⊗n 間の近さは,例えば,
忠実度 F V |ψ0⟩ , U (γ) |0⟩⊗n987
0935名無しさん@ピンキー2024/09/29(日) 00:07:04.21ID:???
(4.21) を近似的に満たす U (γ) を求めるには,
忠実度を最大化する γ を求めればよい. これは,
⊗n2
Oglobal :=−(|0⟩⟨0|)⊗n (4.22)
を用いて, Cglobal (γ) = Tr [Oglobal |ψ (γ)⟩ ⟨ψ (γ)|] と書ける

|ψ (γ)⟩ := U (γ)† V |ψ0⟩ とした. Cglobal (γ) は, |ψ (γ)⟩ の
n 量子ビット全てを測定して |0⟩⊗n を得る確率に, −1 をかけることで得られる.
し たがって, Cglobal (γ) は −1 以上 0 以下の値をとりうる.
FISC では, Cglobal 以外のコスト関数847
0936名無しさん@ピンキー2024/09/29(日) 00:07:18.29ID:???
物理量 Olocal を, n−1
Olocal :=−n
I ⊗|0⟩⟨0|⊗I
(4.23)
1 ⊗j ⊗n−j−1
j=0
として, FISC のコスト関数を
Clocal (γ) = Tr [Olocal |ψ (γ)⟩ ⟨ψ (γ)|] 9
0937名無しさん@ピンキー2024/09/29(日) 00:07:37.31ID:???
Clocal (γ) は, −1
以上 0 以下の値をとり, γ が (4.21) を満たすときにのみ最小値 −1 をとる.
Clocal (γ) は, |ψ (γ)⟩ の第 j 量 子ビットのみを測定して |0⟩ が得られる
確率の, j = 0, 1, . . . , n − 1 に対する平均に −1
0938名無しさん@ピンキー2024/09/29(日) 00:07:52.78ID:???
変分量子アルゴリズム 38
Algorithm 1 逐次最小化アルゴリズム
Require: コスト関数は, (4.14) で定義した CRPQC (γ) とする.
1: 2: 3: 4: 5: 6: 7: 8: 9:
パラメータの初期値 γ(0) を定める. while t < tmax do
for j = 1,2,...,Np do for j′ = 1,2,...,Np do
if j′ = j then
C(t) γ(t) , C(t) γ(t) + π , C(t) γ(t) − π を推定し,
a(t), a(t), a(t) を求める. jjjj4jj4 123
γ(t+1) ← arg min a(t) sinγ + a(t) cosγ + a(t) j 1j2j3
else
(t+1) γj′
10: end if 11: end for 12: t←t+1 13: end for
14: end while
← γj′654
0939名無しさん@ピンキー2024/09/29(日) 00:08:10.65ID:???
変分量子アルゴリズム 41バレンプラトーを引き起こす量子ビット数 n の
変分量子アルゴリズムにおいて, 必要な物理量の測定回数 Ntotal
勾配の情報を用いるオプティマイザー (gradient descent) に限らず,
勾配の情報を用いないオプティ マイザー (Nelder-Mead, Powell, COBYLA) についても,
量子ビット数に対して指数的に多くの物理量の測定5487
0940名無しさん@ピンキー2024/09/29(日) 00:08:42.98ID:???
量子ビットの数 n に対して O (log n) 程の深さの Alternating Layerd Ansatz という
クラスのア ンザッツを用いた変分量子アルゴリズムについては, (4.22) で定義した
Oglobal のように全ての量子ビットに 作用するような物理量 O を用いる場合には
バレンプラトーが起こる一方で, (4.23) で定義した Olocal ように 一部の量子ビットに
作用するような物理量 O を用いる場合にはバレンプラトーが起こらないことが示されて いる
バレンプラトーが起こらないアルゴリズムの例として, 量子畳み込みニューラルネットワー クや
アンザッツがツリーテンソルネットワーク構造を持つ量子ニューラルネットワーク
バレンプラトーの影響を軽減するためのアルゴリズムも提案され始めている
パラメータの一部をランダムに初期化し, 残りのパラメータをアンザッツが恒等演算子と
なるように選ぶパラ メータ初期化の手法である
アンザッツのパラメータを層ごとに最適化
0941名無しさん@ピンキー2024/09/29(日) 00:09:05.90ID:???
変分量子アルゴリズムにおける
逐次最小化アルゴリズムの疑似コード.
ることを繰り返す. そのアルゴリズムの
変分量子アルゴリズムを NISQ デバイ ス上で
実装するためには, アンザッツを U (γ) = UNg UNg −1 . . . U2U1 の
ようにハードウエア上で実装可能な 基本ゲートに分解する必要があった.
そこで, NISQ デバイスへの雑音のモデルとして, (3.25) で定義した
Np
N = ⃝ (Dpi ◦ Ui) (4.18)
j=198
0942名無しさん@ピンキー2024/09/29(日) 00:09:31.54ID:???
Dpi (pi ∈ (0, 1]) は
分極解消チャンネルとし た. この雑音のモデルに対して,
逐次最小化アルゴリズムが剛健であることを裏付ける
次の定理 4.1
0943名無しさん@ピンキー2024/09/29(日) 00:09:47.86ID:???
定理 4.1 (4.17) で定義したコスト関数 C (γ) を考える. (4.18) で
定義した雑音のモデル N の下で計算される コスト関数を C ̃ (γ) とする.
このとき, 物理量の期待値の推定のための測定回数が無限回であならば,
任意の 自然数 t に対して, 逐次最小化アルゴリズムによって求めた
第 t イテレーション後の C (γ) の最適点と C ̃ (γ) 9
0944名無しさん@ピンキー2024/09/29(日) 00:10:06.79ID:???
Algorithm 2 一般的な逐次最小化アルゴリズム Require:
コスト関数は (4.17) の形で表される.
1: 2: 3: 4: 5: 6: 7: 8: 9:
10: 11: 12: 13:
パラメータの初期値 γ(0) を定める. while t < tmax do
for j = 1,2,...,Np do for j′ = 1,2,...,Np do
if j′ = j then
γ(t+1) ← arg min C(t) (γj)
else
(t+1) γj′
end if end for
t←t+1 end for
end while
(t) ← γj′
jj γj
0945名無しさん@ピンキー2024/09/29(日) 00:10:22.31ID:???
一般的な逐次最小化アルゴリズムの疑似コード.
4.2 変分量子アルゴリズムの応用 4.2.1 変分量子固有値ソルバー
変分量子固有値ソルバー (Variational Quantum Eigensolove, VQE) は,
量子系の基底状態とその固有値 (基底エネルギー) を求める
変分量子アルゴリズム9874
0946名無しさん@ピンキー2024/09/29(日) 00:10:48.83ID:???
変分量子固有値ソルバーでは, 量子コンピュータ上で量子系を表現する必要があるので,
対象となる量子系 をスピン系にマッピングする. 例えば, ジョルダン・ウィグナー変換 や
ブラヴィ・キタエフ変換 によって, フェルミオン系をスピン系にマッピングできる.
こうして, 対象となる量子系を n スピン系にマッ ピングしたハミルトニアン H とすると,
一般にハミルトニアン H は,
(4.19)
(4.20)
n−1 3 n−1 3iiijii
H = hασα + hαβσασβ +··· i=0 α=1 i,j=0 α,β=1
0947名無しさん@ピンキー2024/09/29(日) 00:11:20.10ID:???
定義 4.2 Γ-値確率変数 γ は一様分布に従うとする
n 量子ビットの変分量子アルゴリズムのコスト関数を
C:Γ∋γ􏰁→C(γ)∈Rとし,コスト関数CはC1 級とする
このとき,C(γ)がパラメータγj に関してバ レンプラトーで
あるとは, パラメータ γj に関するコスト関数の 1 階微分の
∂γj C (γ) の期待値が 0 で,分散が ある b > 1 を用いて
O (b−n)
0948名無しさん@ピンキー2024/09/29(日) 00:11:37.02ID:???
∂C (γ)∂C (γ) −n Eγ ∂γ =0, Vγ ∂γ =O b
jj
定義 4.2 にチェビシェフの不等式 (補題 A.15) を
用いると, 任意の δ > 0 に対し,2ν ∂C(γ)≥δ ≤ 1E
∂C(γ) = 1V ∂C(γ) =O b−n∂γj δ2 γ ∂γj δ2 γ ∂γj
ここで, ν は γ の従う一様分布とした. (4.26) は,
Γ から一様に γ を選んだ時に, その点での γj に
関 する勾配の大きさが δ 以上である確率が,
量子ビットの数 n に対して指数625
0949名無しさん@ピンキー2024/09/29(日) 00:11:56.20ID:???
スト関数 CRPQC (γ) がバレンプラトーか否か
定義 4.2 に基づき, γ を一様分布 ν に従う確率変数と
みなし, γj に関するコスト関数の勾配の期待値と
分散を計算する
URPQC (γ) を注 目しているパラメータ γj に
依存する部分と依存しない部分に分解して
j−1
j′=1
0950名無しさん@ピンキー2024/09/29(日) 00:12:09.29ID:???
∂γj C (γ) が連続であれば,
∂γj C (γ) が確率変数になる
UR (γR = (γ1,γ2,...,γj−1)) := Wj
Uj′ (γj′)Wj′ (4.27)65
0951名無しさん@ピンキー2024/09/29(日) 00:12:29.98ID:???
V
γ
∂CRPQC (γ) ∂γj
(4n − 1)2 2 Tr[X]2
Np
UL γL = (γj+1,γj+2,...,γNp) :=
として,
URPQC (γ ) = UL (γL ) Uj (γj ) UR (γR ) 6
0952名無しさん@ピンキー2024/09/29(日) 00:12:43.35ID:???
∂CRPQC (γ) = Tr OUL(γL)Uj,γj (γj )UR(γR)
ρUR(γR)†Uj (γj )†UL(γL)† ∂γj †††
+Tr OUL(γL)Uj(γj)UR(γR)ρUR(γR Uj,γj(γj) UL(γL)
0953名無しさん@ピンキー2024/09/29(日) 00:13:01.02ID:???
Uj,γj (γj) := ∂γjUj(γj)
, γR, γL はそれぞれ確率変数であり,
それらに依 存する UR(γR), UL(γL) 65
0955名無しさん@ピンキー2024/09/29(日) 00:13:33.41ID:???
n+1 (2) ∆2n
(2) (2)
(ρ) ∆2n (O) ∆2n (Vj )
= 2
∆d (X):=Tr X − d
(2)
(4.32)0
0956名無しさん@ピンキー2024/09/29(日) 00:13:56.71ID:???
O を (4.22) で定義した Oglobal とし, ρ を
純粋状態とし, Vj をトレースレスとすると,
(2) n (2) (2) −n
∆2n (Vj)=2 ,∆2n (O)=∆2n (ρ)=1−2 であるから,
∂CRPQC (γ)
1 −n
n 2 =O 4 (4.33)
Vγ ∂γ
0957名無しさん@ピンキー2024/09/29(日) 00:14:14.10ID:???
コスト関数 CRPQC (γ) の勾配の期待値が
0 であり, 分散が量子ビットの数 n に対して
指数的
=
2(2 +1)
j
0958名無しさん@ピンキー2024/09/29(日) 00:14:52.50ID:???
RPQC(γ)(·)URPQC(γ)† とし, p := Np j=1
N =Dp ◦U
pj とすると,
(4.35)
(4.36)
Uj (γj)
UL (γL)
Np
N=⃝ Dpj ◦Uj (4.34)
j=1
0959名無しさん@ピンキー2024/09/29(日) 00:15:19.10ID:???
定義 4.2 に定義したバレンプラトーを, noise-induced
バレンプラトーと区別して, noise-free バレンプラトー
ということもある. noise-free バレンプラトーは,
パラメータ空間のほんとんどの領域コスト
関数の勾配が十分小さくなる現象であった
noise-induced バレンプラトーは,
コ スト関数全体が平坦になっていく
0960名無しさん@ピンキー2024/09/29(日) 00:15:33.49ID:???
NISQ デバイスの制約を超えた長時間発展シミュレーション 5.1 はじめに
量子コンピュータは, その量子ビットの数 n に対して指数的に
大きな O (2n) 次元の情報を表現できる. 一 方, 古典コンピュータは,
その古典ビットの数 n に対して O (n) 次元の情報52
0961名無しさん@ピンキー2024/09/29(日) 00:16:51.50ID:???
NISQ デバイスの制約を超えた長時間発展シミュレーション
トロッター分解に依る時間発展シミュレーションについて述べ
る. 5.3 では, RQD に依る時間発展シミュレーションについて
5.4 では, RQD に依る格子シュウィン ガーモデルの長時間発展
シミュレーションをいかにして実現したかを述べる. 5.5 では,
サイズの小さな格子 シュウィンガーモデルに対する,
トロッター分解と RQD に依る長時間発展シミュレーション52
0962名無しさん@ピンキー2024/09/29(日) 00:24:36.50ID:???
5.2 トロッター分解
ハミルトニアン H で表される系の実時間発展を
量子コンピュータ上で行うことを考える.
量子コンピュー タ上でハミルトニアンを表現するために,
考えたい系のハミルトニアンをスピン系のハミルトニアン
Hspin98
0963名無しさん@ピンキー2024/09/29(日) 00:25:07.73ID:???
e−iH ∆T を O (∆t) のオーダーで近似した
量子ゲートを Utrot (∆T ) := e−iHi ∆T
e−iHspinT =(e−iHspin∆T)M =(Utrot(∆T))M +O(∆T)2(5.2)
であるから,M個のUtrot(∆T)を作用させることで,
欲しかった時間発展演算子e−iHspinT をO(∆T)87
0964名無しさん@ピンキー2024/09/29(日) 00:25:43.75ID:???
M = T /∆T 個の量子ゲート Utrot (∆T ) が必要となる.
トロッターステップ数 M に比例して, 必要な量子ゲートの
数が増えていく. よって, 計算可 能な量子ゲートの深さが
限られている NISQ デバイスでは, トロッター分解による
長時間の時間発展シミュi(5.1)784
0965名無しさん@ピンキー2024/09/29(日) 00:30:11.10ID:???
(Utrot (∆T))KU(γˆ1)|0⟩⊗n = U(γ2)|0⟩⊗n を
満たすように最適化されたパラメータ γ2 を求めれば よい.
この手続きを繰り返すことで, 時刻 3K∆T, 4K∆T,... における
量子状態を生成するための浅い量子 ゲート U(γˆ3), U(γˆ4), . . .
を用意することができる. そして, (S2) で, U(γˆ1), U(γˆ2), . . .
を |0⟩⊗n に作用させ ることで, 時刻 K∆T, 2K∆T
0966名無しさん@ピンキー2024/09/29(日) 00:30:30.29ID:???
NISQ デバイスの制約を超えた長時間発展シミュレーション
(a) トロッター分解による時間発展シミュレーション.
シミュレーション時間に比例して, 必要な量子回路の深さが深くなる.
(b) RQD による時間発展シミュレーション. (S1) で時間発展演算子に
対応する量子回路を浅い回路に近似したのち, (S2) で近似回路 を
用いた時間発展365
0967名無しさん@ピンキー2024/09/29(日) 00:31:29.00ID:???
NISQ デバイスの制約を超えた長時間発展シミュレーション 50
5.4.1 格子シュウィンガーモデル
格子ウィンガーモデルとは, 1 次元空間格子上の
量子電磁力学を記述し, 高エネルギー物理のための
量子アルゴリズムのトイモデルとしてよく用いられる
[73, 74, 75, 76, 77]. n を正の偶数として, 格子間隔 a の n サイ
トの格子ウィンガーモデルのハミルトニアン Hlat は,
n−2 2 n−2 n−1
i†iθ †−iθ ga2j†
Hlat =−2a χje jχj+1 −χj+1e jχj + 2 j=0
Lj +m (−1) χjχj (5.5) j=0
j=0
0968名無しさん@ピンキー2024/09/29(日) 00:31:46.74ID:???
χj は第 j サイトの質量 m のスタッガードフェルミオンであり,
正準反交換関係
{χ†j,χk} = δjk, {χj,χk} = 0 (5.6)
を満たす. 奇数サイトの非占有状態を電子の存在に,
偶数サイトの占有状態を陽電子の存在に対応させる.
Lj と θj は, 第 j サイトと第 j + 1 サイトのリンク上の
ゲージ場とその共役運動量95
0969名無しさん@ピンキー2024/09/29(日) 00:32:11.20ID:???
[θj,Lk] = iδjk
を満たす. さらに, フェルミオン場とゲージ場の
相互作用の強さは結合定数 g で特徴付けらている.
(5.7)
(5.8)
ゲージ場の自由度 Lj と θj は, Hlat から取り除くことができる. まず, ガウスの法則 † 1 − (−1)j
を境界条件 L−1 = 0 の下で解くと,
Lj −Lj−1 =χjχj − 2 k
k=0
χj →
χ†kχk − 1 − (−1) 2
Lj =987
0970名無しさん@ピンキー2024/09/29(日) 00:32:29.31ID:???
n−2 2 n−2j k2 n−1 i† † ga†1−(−1)j†
Hlat =−2a χnχn+1 −χn+1χn + 2 χkχk − 2 +m (−1) χjχj (5.11) j=0 j=0 k=0 j=0
e χj (5.10)
(5.9)
j−1
−iθk8
0971名無しさん@ピンキー2024/09/29(日) 00:32:47.41ID:???
ジョルダン・ウィグナー変換 [61] j−1
χj → 2
(−iZk) (5.12)
Xj −iYj
k=0
0972名無しさん@ピンキー2024/09/29(日) 00:33:07.84ID:???
1 サイトあたりの粒子の数
n−2 1
で与えられる. また, 物理量 Q
n−2 j
g2aZk+(−1)
n−1 m j
(XjXj+1 + YjYj+1) + 2 を
数密度と呼ぶことにすると, 数密度 N は,
+ 2
(−1) Zj (5.13)
を用いて,
Hspin = 4a
j=0
2
N = 1 (−1)jZj +1
n−1 1
Q=2 Zj j=0
j=0
2n
j=0
(5.14)
0973名無しさん@ピンキー2024/09/29(日) 00:33:34.59ID:???
格子シュウィンガーモデル Hspin の時間発展演算子 e−iHspin ∆T の量子ゲート Utrot (∆T )
Hspin は,
n−1 m(−1)j ga n j HZ:= αjZZj withαjZ:= 2 +4 2−2
j=0
j=0 k=j+1
|0011>98
0974名無しさん@ピンキー2024/09/29(日) 00:34:00.28ID:???
Xj := I⊗j ⊗ X ⊗ In−j−1, Yj := I⊗j ⊗ Y ⊗ In−j−1,
Zj := I⊗j ⊗ Z ⊗ In−j−1 とした. すると, 奇数番目の
量子ビットの |1⟩ が電子の存在に, 偶数番目の量子ビットの |0⟩ が
陽電子の存在に対応54
0975名無しさん@ピンキー2024/09/29(日) 00:34:48.61ID:???
n−1
j=0 k=0
HXY := HZZ :=
XY XY 1
j=0 n−2
αj (XjXj+1 + YjYj+1) with αj := 4a
n−3 n−2
ZZ ZZ g2a
αjk ZjZk with αjk := 4 (n−k−1)
Hspin = HZ + HXY + HZZ
(5.17)
0976名無しさん@ピンキー2024/09/29(日) 00:35:07.27ID:???
j R 2αZ∆T Zj
(a) e−iHZ ∆T = ∏ e−iαZj ∆T Zj の
各項 e−iαZj ∆T Zj の量子ゲートによる実装. j
j H S • R 2αXY∆T • † H XjS
j+1 H S R 2αXY∆T † H ZjS
(b) e−iHXY ∆T =
∏ XY j e−iαj
XY
∆T (Xj Xj+1+Yj Yj+1)
0977名無しさん@ピンキー2024/09/29(日) 00:35:54.79ID:???
e−iHZ ∆T , e−iHX Y ∆T , e−iHZ Z ∆T の量子ゲートによる実装.
(c) e−iHZZ ∆T =
Utrot (∆T ) := e−iHZ ∆T e−iHX Y ∆T e−iHZ Z ∆T 
n−1
Z
n−3 n−2 ZZ
= e−iαj ∆TZj j=0
e−iαj
∆T(XjXj+1+YjYj+1)
n−2
XY
(5.18) e−iαj ∆TZjZk (5.19)
j=0
j=0 k=j+1
0978名無しさん@ピンキー2024/09/29(日) 00:36:17.10ID:???
[Q, Utrot (∆T )] = 0 であるから,
Utrot (∆T ) に依る時間発 展によって電荷 Q の保存則は保たれる.
5.4.2 アンザッツ: 粒子数保存アンザッツ
RQD が NISQ の雑音下でも機能するためには,
Utrot (∆T )
0979名無しさん@ピンキー2024/09/29(日) 00:36:33.51ID:???
n 量子ビット系を記述する複素内積空間 H の
部分空間 Hn,m (m = 0,1,...,n) を n−1 n−1
Hn,m = span |ik⟩ | ik ∈ {0,1}, k=0
ik = m
(5.20)
k=09
0980名無しさん@ピンキー2024/09/29(日) 00:36:48.06ID:???
NISQ デバイスの制約を超えた長時間発展シミュレーション
と定義し, m を粒子数と呼ぶ. すると, H = nm=0 Hn,m である.
また, Hn,m は, n 量子ビットのうち, m 量 子ビットが |1⟩,
n − m 量子ビットが |0⟩ となっている量子状態を正規直交基底として持つ
したがって, Hn,m の次元 dn,m は nCm 8
0981名無しさん@ピンキー2024/09/29(日) 00:37:01.45ID:???
n サイト格子シュウィンガーモデルの電荷 Q の
固有値 q の固有空間は, Hn, n2 −q である.
q ≥ 0 とする. このとき, 電荷 q の系の状態は
電子が k 個, 陽電子が q + k
個 (k = 0, 1, . . . , n2 − q)
0982名無しさん@ピンキー2024/09/29(日) 00:37:18.14ID:???
陽電子がq+k個,電子がk個の状態を量子ビット上で
表現すると,粒子数k+(n/2−(q+k))= n2 −qの量子状態
陽電子が q + k 個, 電子が k 個の状態が張る空間の
次元は, n2 Ck · n2 Cq+k であるから, 電荷 q の固有空間の
次元は,􏰞n2−q nCq+k ·nCk =nCn−q =dn/
0983名無しさん@ピンキー2024/09/29(日) 00:37:39.31ID:???
q≥0のとき,電荷Qの固 k=02 2 2 2有値 q の固有空間は,
Hn, n2 −q であることが言えた. q < 0 の場合も同様に
示すことができる. したがって, 格 子シュウィンガーモデルの
電荷 Q の保存則は, 量子ビット上の粒子数の保存則665487
0984名無しさん@ピンキー2024/09/29(日) 00:37:59.42ID:???
A ̃ (θ )n−2, (φ )n−2 は, 粒子数保存アンザッツ A
(5.22) (θ, φ) の第 l 層に対応
L−1n−2 n−2
An (θl,i)i=0 , (φl,i)i=0 n l,i i=0 l,i i=0
l=0
n,L9
0985名無しさん@ピンキー2024/09/29(日) 00:38:18.47ID:???
A θl,0,φl,0 ()
A θl,1,φl,1 .
A
()
θl,n/2 , φl,n/2
. ..
()
A θl,n−2 , φl,n−2
A
()
θl,n/2−1 , φl,n/2−1
0986名無しさん@ピンキー2024/09/29(日) 00:38:38.47ID:???
量子ビットに作用する 3 層の粒子数保存アンザッツ An=4,L=3 (θ, φ) は
粒子数保存アンザッツ An,L (θ, φ) は, 粒子数を保存する A ゲートのみから
構成されているので, 粒 子数保存アンザッツ An,L (θ, φ) もまた粒子数を
保存874
0987名無しさん@ピンキー2024/09/29(日) 00:38:58.55ID:???
n−1
A (θ0,0, φ0,0)
A (θ1,0, φ1,0)
A (θ0,2, φ0,2)
A (θ1,2, φ1,2)
A (θ2,2, φ2,2)
A (θ0,1, φ0,1)
A (θ1,1, φ1,1)
A (θ2,1, φ2,1)
στj (5.23)
0988名無しさん@ピンキー2024/09/29(日) 00:39:15.23ID:???
τj ∈ {0, 1} は, n−1 τj = m を満たす
Xn,m |0⟩⊗n は粒子数 m の量子状態
Xn,m =
j=0
レス数が950を超えています。1000を超えると書き込みができなくなります。

ニューススポーツなんでも実況