等身大ぬいぐるみ ラブドール 6
レス数が1000を超えています。これ以上書き込みはできません。
[Q, Utrot (∆T )] = 0 であるから,
Utrot (∆T ) に依る時間発 展によって電荷 Q の保存則は保たれる.
5.4.2 アンザッツ: 粒子数保存アンザッツ
RQD が NISQ の雑音下でも機能するためには,
Utrot (∆T ) n 量子ビット系を記述する複素内積空間 H の
部分空間 Hn,m (m = 0,1,...,n) を n−1 n−1
Hn,m = span |ik⟩ | ik ∈ {0,1}, k=0
ik = m
(5.20)
k=09 NISQ デバイスの制約を超えた長時間発展シミュレーション
と定義し, m を粒子数と呼ぶ. すると, H = nm=0 Hn,m である.
また, Hn,m は, n 量子ビットのうち, m 量 子ビットが |1⟩,
n − m 量子ビットが |0⟩ となっている量子状態を正規直交基底として持つ
したがって, Hn,m の次元 dn,m は nCm 8 n サイト格子シュウィンガーモデルの電荷 Q の
固有値 q の固有空間は, Hn, n2 −q である.
q ≥ 0 とする. このとき, 電荷 q の系の状態は
電子が k 個, 陽電子が q + k
個 (k = 0, 1, . . . , n2 − q) 陽電子がq+k個,電子がk個の状態を量子ビット上で
表現すると,粒子数k+(n/2−(q+k))= n2 −qの量子状態
陽電子が q + k 個, 電子が k 個の状態が張る空間の
次元は, n2 Ck · n2 Cq+k であるから, 電荷 q の固有空間の
次元は,n2−q nCq+k ·nCk =nCn−q =dn/ q≥0のとき,電荷Qの固 k=02 2 2 2有値 q の固有空間は,
Hn, n2 −q であることが言えた. q < 0 の場合も同様に
示すことができる. したがって, 格 子シュウィンガーモデルの
電荷 Q の保存則は, 量子ビット上の粒子数の保存則665487 A ̃ (θ )n−2, (φ )n−2 は, 粒子数保存アンザッツ A
(5.22) (θ, φ) の第 l 層に対応
L−1n−2 n−2
An (θl,i)i=0 , (φl,i)i=0 n l,i i=0 l,i i=0
l=0
n,L9 A θl,0,φl,0 ()
A θl,1,φl,1 .
A
()
θl,n/2 , φl,n/2
. ..
()
A θl,n−2 , φl,n−2
A
()
θl,n/2−1 , φl,n/2−1 量子ビットに作用する 3 層の粒子数保存アンザッツ An=4,L=3 (θ, φ) は
粒子数保存アンザッツ An,L (θ, φ) は, 粒子数を保存する A ゲートのみから
構成されているので, 粒 子数保存アンザッツ An,L (θ, φ) もまた粒子数を
保存874 n−1
A (θ0,0, φ0,0)
A (θ1,0, φ1,0)
A (θ0,2, φ0,2)
A (θ1,2, φ1,2)
A (θ2,2, φ2,2)
A (θ0,1, φ0,1)
A (θ1,1, φ1,1)
A (θ2,1, φ2,1)
στj (5.23) τj ∈ {0, 1} は, n−1 τj = m を満たす
Xn,m |0⟩⊗n は粒子数 m の量子状態
Xn,m =
j=0 時刻 t > 0 の状態 |ψ(t)⟩ もまた固有値 q の固有ベクトルで,
|ψ (t)⟩ ∈ Hn, n2 −q を満た す. よって, |ψ(t)⟩ を, ある θˆ と φˆ を
用いて An,L(θˆ, φˆ)Xn, n2 −q |0⟩⊗n8 γ,l,i l,i
1 2
5
C(θ,φ)|θ′
l ,i
′=θ(t) l′,i′
(for(l′,i′)̸=(l,i)), φ′
l ,i
′=φ(t) l′,i′
(γ=θ) (γ=φ)
C(θ,φ)|φ′
l ,i
′=φ(t) l′,i′
(for(l′,i′)̸=(l,i)), θ′
l ,i
′=θ(t) l′,i′
C(t) (γ ) = a(t) sin2γ γ,l,i l,i 1
+ a(t) cos2γ l,i 2
+ a(t) sinγ + a(t) cosγ l,i 3 l,i 4
+ a(t) l,i 5 (t)
Cγ ,l,i (γ1 ) sin 2γ1
(t)
Cγ ,l,i (γ2 ) sin 2γ2
C(t) (γ ) = sin 2γ γ,l,i 3 3
C (t) (γ4 ) sin 2γ4 γ,l,i
cos 2γ1 cos 2γ2
γ ,l,i
sin γ1 sin γ2
cos γ1 cos γ2
(t) 1a1
(t) 1 a2
1 a(t) 3 1 a(t)
598 パラメータの初期値 (θ(0) = (θ(0))l,i, φ(0) = (φ(0))l,i) を定める. l,i l,i
while t < tmax do
for (γ,l,i) ∈ {θ,φ} × {0,1,...,L − 1} × {0,1,...,n − 2} do
for (γ′,l′,i′) ∈ {θ,φ} × {0,1,...,L − 1} × {0,1,...,n − 2} do if (γ,l,i) = (γ′,l′,i′) then
else
(t+1) γl′,i′
end if end for
t←t+1 end for
end while
← γl′,i′987 γ(t+1) ← arg min a(t) sin2γ
+ a(t) cos2γ l,i 2
+ a(t) sinγ l,i 3
+ a(t) cosγ l,i 4
l,i
γl,i (t)
1
1 2
5
+ a(t)
l,i 5 0.5 0.4 0.3
0.2 0.1 0.0
Exact Trotter
RQD (Cglobal)
0 /5 2/5 3/5 time Eθ,φ Eθ,φ
∂γ
∂Clocal(θ,φ) ∂γ
= 0, Vθ,φ
=0, Vθ,φ
∂γ
∂Clocal(θ,φ) ∂γ
= 4bγ dn−2,m−1 dn,m(dn,m+1)2
(5.32)
∂Cglobal(θ,φ) ∂Cglobal(θ,φ) 0
(m = 0, n)
(m=1, 2, ..., n−1)
0
=16bγd2n−2,m−1m(n−m) (m=1, 2, ..., n−1)
(dn,m +1)(d2n,m −1)n3
(5.33) C (γ) = Tr UL (γL)† OUL (γL)UM
(γM)UR (γR)ρUR (γR)† UM (γM)† と
表せるから, γ に関する勾配は,
∂C(γ)† † † ∂γ =Tr UL (γL) OUL (γL)UM,γ (γM)UR (γR)ρUR (γR) UM (γM)
(6.4)
(6.5) (6.6)
(6.7)
+ Tr UL (γL)† OUL (γL) UM (γM ) UR (γR) ρUR (γR)† UM,γ (γM )†
UM,γ (γM ) := ∂UM (γM ) ∂γ
UM (γM ), UM (γM )† (初コメ3号)僕は貼るだけで意見を述べないと告知しているにも関わらず
成りすましのさらに成りすましの無能なレスで多くの無能なスレ民が釣られている。
馬鹿なのですね。
今後も無能なレスは全部成りすましです。念の為。
僕は今後も無言で貼り続けますね。
勝ち負けの問題では有りません。誰とも勝負はしていません。
ぬいドーラーの居場所を永久に潰すだけです。 (今後)
後残り、5500レス分は量子力学です。
その後はフランス構造主義哲学周辺(デリダ、フーコー、ドゥルーズ、ガタリ)を7800レス予定しています。
その後はギリシャ哲学(ピタゴラス、アリストテレス、プラトン、ニーチェまで)や、ハイデガーも15000レス貼ります。
(次回スレの事前予告)
何も言わずに平均100レス連続で貼っているのが僕です。
そのあとで皆さんを怒らせる(呆れさせる)無能なレスをしているのが成りすましです。
くれぐれも今後は釣られないようにして下さい。 このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。
life time: 7日 0時間 55分 16秒 レス数が1000を超えています。これ以上書き込みはできません。